Commutative Algebra - Lecture 12: Algebras and Affine Fields (Oct. 16, 2013)

Stephen Melczer

October 16, 2013

1 Finishing up another proof of Theorem A

Recall that last time we had
Proposition (Special case of Noether normalization). Let $R=F\left[a_{1}, \ldots, a_{n}\right]$ be an affine algebra and suppose that R is algebraic over $F\left[a_{1}\right]$. Then there exists $b \in R$ such that $R=F\left[b, a_{2}, \ldots, a_{n}\right]$ and R is integral over $F[b]$.

Before our alternate proof, we need two observations. First,
Lemma 1. Suppose $C \subset R$ with $c \in C$ invertible in R and c^{-1} integral over C. Then $c^{-1} \in C$.

Proof. Since c^{-1} is integral over C we have

$$
\left(c^{-1}\right)^{n}+\sum_{i=0}^{n-1} a_{i}\left(c_{-1}\right)^{i}=0
$$

where the a_{i} are in C. Multiplying by c^{n-1} gives

$$
c^{-1}=\sum_{i=0}^{n-1}\left(-a_{i}\right) c^{n-i-1}
$$

and $n-i-1 \geq 0$ for $0 \leq i \leq n-1$.
Second,
Proposition. Suppose R is a domain and C is a subring of R such that R is integral over C. Then R is a field if and only if C is a field.

Proof. The forward implication follows from the previous lemma. For the reverse, take $a \in R$ with $a \neq 0$. Then $C[a] \subset R$ and $C[a]$ is a field since we assumed C is a field and a is integral. Thus, $a^{-1} \in C[a] \subset R$ and R is a field.

Here is our old friend, which we will now prove without the Artin-Tate lemma.
Theorem 1.1 (Main Theorem A). An affine algebra $R=F\left[a_{1}, \ldots, a_{n}\right]$ is a field if and only if R is algebraic over F.
Proof. Our old proof of the reverse implication did not use the Artin-Tate lemma. For the forward, we may again show by induction that R is algebraic over the field of fractions of $F\left[a_{1}\right]$ and thus, clearing denominators, we may assume that R is algebraic over $F\left[a_{1}\right]$.

By the special case of Noether normalization, there exists $b \in R$ such that R is integral over $F[b]$ and $R=F\left[b, a_{2}, \ldots, a_{n}\right]$. But R is a field, so by the previous proposition $F[b]$ is a field. Thus, b is algebraic over F and by the transitivity of integral extensions we are done.

2 Dependence Relations

2.1 Introduction to dependence relations

Our first step is a language for general dependence relations.
Definition 2.1. A strong abstract dependence relation (s.a.d.r.) on a set V is a relation δ between elements of V and subsets of V, written $v \delta S$ satisfying (AD1-AD4)
(AD1) $v \in S$ implies $v \delta S$
(AD2) Suppose that $v \delta S$ and suppose that $S_{1} \subset V$ such that for all $s \in S$, s δS_{1}, then $v \delta S_{1}$
(AD3) (Steinitz exchange property) $v \delta(S \cup\{s\})$ and $v \not \varnothing S$ then $s \delta(S \cup\{v\})$
(AD4) $v \delta S$ implies there exists $S_{0} \subset S$ with $\left|S_{0}\right|<\infty$ with $v \delta S_{0}$
Let's see how this captures linear dependence. Let V be a vector space, and take $v \delta S$ to mean that v is in the span of S. Let's check the axioms:
(AD1) If $v \in S$ then v is trivially in the span of S.
(AD2) Suppose that $v \in \operatorname{Span}(S)$. Then write

$$
v=\sum_{I \in I} \alpha_{i} s_{i},
$$

for $\alpha_{i} \in F, s_{i} \in S$, and I a finite index set. Then if each $s_{i} \in \operatorname{Span}\left(S_{1}\right)$ we can write $s_{i}=\sum_{j \in J} \beta_{i j} t_{j}$ for $t_{i} \in S_{0}$ and J some finite index set, so $v=\sum_{j \in J} \sum_{i \in I} \alpha_{i} \beta_{i j} t_{j}$ which is in the span of S_{1}.
(AD3) Say v is in the span of $S \sup \{s\}$ so $v=\sum \alpha_{i} s_{i}+\beta s$ with $\alpha_{i}, \beta \in F$ and $s_{i} \in S$. Then $\beta \neq 0$ since $v \notin \operatorname{Span}(S)$ so $s=(1 / \beta) v-\sum\left(\alpha_{i} / \beta\right) s_{i}$ which is in the span of $S \cup\{v\}$.
(AD4) Say $v \in \operatorname{Span}(S)$. Then $v=\sum \alpha_{i} s_{i}$ with $s_{i} \in S$. But this sum is finite, so let S_{0} be the set of the s_{i} in the finite sum. Then S_{0} is finite and v is in its span.

Thus, linear dependence is an example of a s.a.d.r. Can we get linear algebra results?

2.2 Dependences in linear algebra

Definition 2.2. Let δ be a s.a.d.r. on V. We say that $S \subset V$ is independent if $s \not \supset(S \backslash\{s\})$ for all $s \in S$, and say that $S \subset V$ is dependent if it is not independent.

First, we show that we can extend an independent set by including an elements that does not depend on it.

Lemma 2. Let δ be a s.a.d.r. on V. Suppose that S is an independent subset of V and $v \not \subset S$. Then $S \cup\{v\}$ is independent.

Proof. Suppose that the result doesn't hold. Since $v \not \varnothing S$ there must exist $s \in S$ such that $s \delta((S \cup\{v\}) \backslash\{s\})$. But this is equivalent to $s \delta((S \backslash\{s\}) \cup\{v\})$, so by the Steinitz exchange property $v \delta((S \backslash\{s\}) \cup\{s\})$, a contradiction.

We now wish to look at what it means to be a basis.
Definition 2.3. Let δ be a s.a.d.r. on V. A base of V is a maximal independent subset of V.

To begin, we prove that any independent set can be extended to a basis.
Proposition. Let δ be a s.a.d.r. on V, and S be an independent subset of V. Then S is contained in a base of V.

Proof. Let \mathcal{S} be the set of all independent subsets of V which contain S. Let $S_{1} \subset S_{2} \subset \ldots$ be a chain in \mathcal{S}. Consider the union U of the S_{i}. Clearly $S \subset U$. Furthermore, suppose that U is not independent, i.e., there exists some $v \in U$ with $v \delta(U \backslash\{v\})$. By AD4, there exists a finite $T \subset U \backslash\{v\}$ with $v \delta T$. But as T is finite, at some point in the chain we have an S_{j} with $T \subset S_{j}$ and $v \in S_{j}$, contradicting S_{j} being independent. Since $S \in \mathcal{S}$, Zorn's Lemma implies that \mathcal{S} contains a maximal element.

We also see that every element of V depends on a basis, by maximality.
Proposition. Let δ be a s.a.d.r. on V and let B be a base of V. Then for all $v \in V$, $v \delta B$.
Proof. By maximality and our lemma about extending by a single element.
Next we show that all bases have the same cardinality.
Proposition. Let δ be a s.a.d.r. on V. Any two bases of V have the same cardinality.
Proof. We haven't talked about cardinals, so we will only prove it in the finite case. Let B, B^{\prime} be bases, and write $B=\left\{b_{1}, \ldots, b_{t}\right\}$. By symmetry it suffices to show that $|B| \leq\left|B^{\prime}\right|$.

We claim that there exists $b_{1}^{\prime}, \ldots, b_{k}^{\prime} \in B^{\prime}$ such that $\left\{b_{1}^{\prime}, \ldots, b_{k}^{\prime}, b_{k+1}, \ldots, b_{t}\right\}$ is independent. If $k=0$ then the result holds. Now suppose we know that $\left\{b_{1}^{\prime}, \ldots, b_{k-1}^{\prime}, b_{k}, \ldots, b_{t}\right\}$ is independent. Then $b_{k} \delta\left\{b_{1}^{\prime}, \ldots, b_{k-1}^{\prime}, b_{k+1}, \ldots, b_{t}\right\}$, but $b_{k} \delta B^{\prime}$. By AD2 with B^{\prime} as S and $\left\{b_{1}^{\prime}, \ldots, b_{k-1}^{\prime}, b_{k+1}, \ldots, b_{t}\right\}$ as S_{1}, we see that there exists some $b_{k}^{\prime} \in B^{\prime}$ such that $b_{k}^{\prime} \delta\left\{b_{1}^{\prime}, \ldots, b_{k-1}^{\prime}, b_{k+1}, \ldots, b_{t}\right\}$ and by our previous lemma $\left\{b_{1}^{\prime}, \ldots, b_{k-1}^{\prime}, b_{k}^{\prime}, b_{k+1}, \ldots, b_{t}\right\}$ is independent. This proves the claim, and applying the claim with $t=k$ proves the theorem.

2.3 Algebraic dependence

Now lets apply these ideas to algebraic dependence.
Definition 2.4. Let R be an F-algebra. Say $a_{1}, \ldots, a_{n} \in R$ are algebraically independent over F if $\psi: F\left[\lambda_{1}, \ldots, \lambda_{n}\right] \rightarrow F\left[a_{1}, \ldots, a_{n}\right]$ given by $\lambda_{i} \mapsto a_{i}$ is one-to-one. If a_{1}, \ldots, a_{n} are not independent, we say they are algebraically dependent.

Let R be an F-algebra and a domain - then we say that $a \delta S$ if a is algebraic over $F[S]$. Proposition. Suppose S is algebraically independent over F. Then $a \delta S$ if and only if $S \cup\{a\}$ is an algebraic dependence over F.
Proof. First, suppose that $S \cup\{a\}$ is algebraically dependent. Then there exists $f \in$ $F\left[\lambda_{1}, \ldots, \lambda_{n+1}\right]$ such that $f\left(s_{1}, \ldots, s_{n}, a\right)=0$ for $s_{i} \in S$. Since S is algebraically independent λ_{n+1} must appear in f. Let $g\left(\lambda_{n+1}\right)=f\left(s_{1}, \ldots, s_{n}, \lambda_{n+1}\right)$, so $g \in F[S]\left[\lambda_{n+1}\right]$ is still a nontrivial polynomial with $g(a)=0$. Thus, a is algebraic over $F[S]$ so $a \delta S$.

Finally, say $a \delta S$. Then there exists $g \in F[S][\lambda]$ such that $g(a)=0$. The coefficients of g involve only finitely many $s_{i} \in S$ - call these s_{1}, \ldots, s_{n}. If we view $g \in F\left[\lambda_{1}, \ldots, \lambda_{n}, \lambda\right]$ with $g\left(s_{1}, \ldots, s_{n}, a\right)=0$ so $S \cup\{a\}$ is algebraically dependent over F.

We are able to apply our general results above, due to the following proposition.
Proposition. This δ be a s.a.d.r.
Proof. AD1 Take $v \in S$. Then v is algebraic over $F[S]$ as it satisfies $\lambda-v$.
AD3 Take v algebraic over $F[S \cup\{s\}]$ but v not algebraic over $F[S]$. Then there exists $f \in F[S \cup\{s\}][\lambda]$ with $f(v)=0$. But s appears non-trivially in f since $v \not \varnothing S$. If we view $f \in F[S]\left[\lambda^{\prime}, \lambda\right]$ with $f(s, v)=0$ then we have $f \in F[S \cup\{v\}]\left[\lambda^{\prime}\right]$ with $f(s)=0$ and f is non-trivial in $F[S \cup\{v\}]$.

AD4 Say v is algebraic over $F[S]$ so $f(v)=0$ for some $f \in F[S][\lambda]$. Only finitely many elements of S appear in the coefficients of f, call this set S_{0}. Then $f \in F\left[S_{0}\right][\lambda]$ so $v \delta S_{0}$.

AD2 Suppose $v \delta S$ and S_{1} is such that $s \delta S$ for all $s \in S$. By AD4, there exists $S_{0} \subset S$ finite with $v \delta S_{0}$. Then v is algebraic over $F\left[S_{0}\right]$, and each $s_{i} \in S_{0}$ is algebraic over $F\left[S_{1}\right]$. Let K be the field of fractions of $F\left[S_{0}\right]$. Let L be the field of fractions of $F\left[S_{1}\right]$.
We have transitivity of algebraic extensions for fields. Note that each $s_{i} \in S_{0}$ is algebraic over L and v is algebraic over K. So by transitivity v is algebraic over L. Then there exists $f \in L[\lambda]$ with $f(v)=0$. Clear denominators to get $f \in F\left[S_{1}\right]$ with $g(v)=0$, so $v \delta S_{1}$.

This leads to the following definition.
Definition 2.5. Let R be an F-algebra and domain. Let B be a base with respect to δ. We say that B is a transcendence base, and that the size of B is the transcendence degree of R (which is well defined by our work above). This is written $\operatorname{tr} \cdot \operatorname{deg}_{F}(R)$.

References

[1] L.H. Rowen, Graduate Algebra: Commutative View, American Mathematical Society, 2006.

